
April 14, 2005 19:43 Proceedings Trim Size: 9in x 6in procNCG20050413

A RELATION ON SPIN BUNDLE GERBES AND MAYER’S
DIRAC OPERATORS

ATSUSHI TOMODA

Department of Mathematics, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

E-mail: ton@math.keio.ac.jp

Exploiting the notion of bundle gerbe due to Murray, Murray and Singer con-
structed a generalization of Dirac operators for possibly non-spin manifolds. We
shall provide an alternative proof for their index formula, and clarify the relation
between a generalized Dirac operators due to Mayer and their operators. Further-
more, we determine the twisted Chern character of some bundle gerbe modules.

Introduction

Murray and Singer introduced the Dirac operators associated with the spin
bundle gerbe modules, which are , roughly speaking, roots of complex vector
bundles, by the use of the spin bundle gerbes.

The purpose of this paper is to describe the index formula of the
Dirac operators associated with spin bundle gerbe modules from a different
point of view. Mayer introduced Mayer’s Dirac operator associated with
a G(2l, n, 2)-structure σ. We also relate their operators with the Mayer’s
Dirac operators and describe the twisted Chern character for some bundle
gerbe modules explicitly:

Theorem 0.1. Let σ be a G(2l, n, 2)-structure of X induced by a real vector
bundle E with W3(TX ⊕E) = 0 and let F be the associated line bundle of
σ. Then we have

chτ (Wσ) = 2[n/2]ed/2

[n/2]∏

i=1

cosh(xi/2),

where d = c1(F ) and p(E) =
∏

i(1 + x2
i ).

1
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1. Bundle gerbes

1.1. Bundle gerbes

We shall give an exposition of the bundle gerbes. We refer to Murray5.
Let X be a compact oriented smooth manifold and let π : Y → X be a

fiber bundle. Then we can consider the fiber product Y ×π Y with itself.
For simplicity, we denote this by Y [2].

Definition 1.1. Let X and Y be as above and let L → Y [2] be a hermitian
line bundle. A triple (X, Y, L) is said to be a bundle gerbe over X if L is
equipped with a product which is an isomorphism

L(y1,y2) ⊗ L(y2,y3)

∼=−→ L(y1,y3) for every (y1, y2), (y2, y3) ∈ Y [2],

and which is associative.

As line bundles have Euler classes, bundle gerbes have a kind of char-
acteristic classes:

Definition 1.2. Fix a good cover {Uα} of X and local sections {sα :
Uα → P}. Then we obtain line bundles Lαβ = (sα, sβ)∗L over Uαβ . A
choice of sections zαβ ∈ Γ(Lαβ) and the induced product gives a unique
{εαβγ : Uαβγ → U(1)} such that

Lαβ ⊗ Lβγ → Lαγ ; zαβ ⊗ zβγ 7→ εαβγzαγ .

Then {εαβγ} gives a cohomology class [{εαβγ}] ∈ Ȟ2(X;U(1)) ∼= Ȟ3(X;Z)
and we denote this by dd(X,Y, L) and we call this the Dixmier-Douady
class for the bundle gerbe (X,Y, L).

Remark 1.1. The Dixmier-Douady class dd(X, Y, L) of (X,Y, L) does not
depend on the choice of open covering of X and local sections {sα} and
{zαβ}.

Example 1.1. Consider a principal SO(n)-bundle P and a central exten-
sion:

1 → Z2 → Spin(n)
p−→ SO(n) → 1.

We define a Z2-bundle Q over P [2] → X by

Q =
{

((y1, y2), α) ∈ P [2] × Spin(n)
∣∣∣ y1p(α) = y2

}

so we obtain the complex line bundle L → P [2] associated with Q. Then the
triple (X, P,L) is a bundle gerbe over X and we call this the spin bundle
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gerbe of P . Especially every oriented closed n-dimensional manifold with
a Riemannian metric yields a SO(n)-frame bundle P of TX and hence a
spin bundle gerbe (X,P, L) of P . We simply call this the spin bundle gerbe
of X.

We note that the Dixmier-Douady class dd(X, P, L)of the spin bundle
gerbe (X, P, L) of X coincides with the third integral Stiefel-Whitney class
W3(X).

In the subsequent discussion we deal with only spin bundle gerbes.

1.2. Bundle gerbe modules and the twisted Chern character

We introduce the notion of bundle gerbe modules. This is introduced in
Bouwknegt, Carey, Mathai, Murray, and Stevenson3.

Definition 1.3. Let (X, P, L) be a spin bundle gerbe. Then a hermitian
vector bundle W over P is called a bundle gerbe module for (X, P, L) if it
is endowed with the multiplication of L:

L(y1,y2) ⊗Wy2

∼=−→ Wy1 for every (y1, y2) ∈ P [2]

which satisfies the commutative diagram:

(L(y1,y2) ⊗ L(y2,y3))⊗Wy3 −−−−→ L(y1,y3) ⊗Wy3 −−−−→ Wy1∥∥∥
∥∥∥

L(y1,y2) ⊗ (L(y2,y3) ⊗Wy3) −−−−→ L(y1,y2) ⊗Wy2 −−−−→ Wy1 .

We denotes by Mod(X,P, L) the isomorphism classes of bundle gerbe mod-
ules for (X,P, L).

Spin(n) is naturally included in L. Hence Spin(n) acts on a bundle
gerbe module W . The action of Z2 ⊂ Spin(n) on each fiber Wy is mul-
tiplication by ±1. Consider two bundle gerbe modules V and W . Then
Spin(n) acts on V ⊗W and the action induces SO(n)-action. Moreover, it
gives rise to a complex vector bundle E over X satisfying π∗E = V ⊗W .
We denote this by (V ⊗W )0.

Let (X, P,L) be the spin bundle gerbe for X. Then we have a canonical
flat connection ∇ on L induced by Z2-bundle Q. ∇ is a bundle gerbe
connection. That is, the product of L preserves the connection.

Definition 1.4. Let W → P be a bundle gerbe module for (X, P,L).
Then a hermitian connection ∇W on W is called a bundle gerbe module
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connection on W compatible with (X, P, L,∇) if the multiplication

ϕ : L⊗ π∗1W
∼=−→ π∗2W

preserves the connections, where L⊗π∗1W (π∗2W resp.) is endowed with the
induced connection ∇⊗ 1 + 1⊗π∗1∇W ( π∗2∇W resp. ). Here πi : Y [2] → Y

denotes the i-th element forgetting map for i = 1, 2. If there is no confusion,
we simply call ∇W a bundle gerbe module connection on W .

Let ∇W be a bundle gerbe module connection. Then we have

1⊗ π∗1F (∇W )k = ϕ ◦ π∗2F (∇W )k ◦ ϕ−1 for every k > 0.

So every invariant polynomial P defines P (F (∇W )) ∈ Ω2∗(P ) and (π∗1 −
π∗2)P (F (∇W )) = 0. Therefore we obtain [η] ∈ H2∗(X) such that π∗η =
P (F (∇W )). The cohomology class [η] does not depend on a choice of bundle
gerbe module connections ∇W . Especially tr is invariant polynomial and
there is unique [ηk] ∈ H2k(X) such that

π∗[ηk] = tr

((−1
2πi

(
F (∇W )

))k
)

Definition 1.5. Analogously to Chern character of complex vector bun-
dles, we define the twisted Chern character chτ (W ) of a bundle gerbe mod-
ule W by

chτ (W ) = [η0] + [η1] + · · ·+ [ηk] + · · · ∈ H2∗(X;R).

2. Dirac operators associated with bundle gerbe modules

Let X be a 2l-dimensional smooth oriented closed manifold and let (X, P, L)
be the lifting bundle gerbe of X. In this section we shall introduce the Dirac
operator associated with a bundle gerbe module for a probably non-spin
manifold.

Definition 2.1. Let (X,P, L) be as above. Then we define S(P ) as

S(P ) = P × S2l, where S2l denotes the spinor space of R2l.

It is easy to see that S(P ) → P is a bundle gerbe module for (X,P, L), and
we call S(P ) the spinor bundle gerbe module of P .

Endowed with some Riemannian metric g, X has the Levi-Civita con-
nection ∇LC on TX. The connection ∇LC induces a connection 1-form



April 14, 2005 19:43 Proceedings Trim Size: 9in x 6in procNCG20050413

5

ω ∈ Ω1(P ; so(2l)) on P . Here we note that there is the natural iso-
morphism ϕ∗ : spin(2l)

∼=−→ so(2l) induced by ϕ : Spin(2l) → SO(2l).
The spinor representation ρ : Spin(2l) → Aut(S2l) gives rise to ρ∗ :
spin(2l) → End+(S2l). The composition ρ∗ ◦ ϕ−1

∗ : so(2l) → End+(S2l)
defines ω̃ ∈ Ω1(P ; End+S(P )) by ω̃ = ρ∗ ◦ ϕ−1

∗ (ω). We define a canonical
connection ∇̃ on S(P ) by ∇̃ = d + ω̃.

We can easily show that ∇̃ is a bundle gerbe module connection on
S(P ).

Next, we shall define Clifford multiplication c̃ on P . The connection
1-form ω ∈ Ω1(P ; End−(S(P ))) induces

T ∗P → π∗T ∗X.

Moreover,

P × R2l × S2l → P × S2l ; (y, v, ξ) 7→ (y, vξ)

defines c : π∗TX → End−(S(P )) since P ×SO(2l) R2l is isomorphic to TX.
So we have

c̃ : T ∗P → π∗T ∗X
∼=−→ π∗TX

c−→ End(S±(P ), S∓(P )).

We have prepared some notions so far. Now we define the Dirac operator
D/W associated with a bundle gerbe module W .

Choose and fix a bundle gerbe module W for (X, P, L) and an arbitrary
bundle gerbe module connection ∇A compatible with (X, P,L,∇L). Then
we obtain D/W,A as the composition:

D/W,A = (c̃⊗ Id) ◦ (∇̃ ⊗ 1 + 1⊗∇A).

We have to note that D/W,A is a first order non-elliptic differential oper-
ator from S+(P )⊗W to S−(P )⊗W over P because the symbol σ(D/W,A) van-
ishes in direction of the fiber of P . However, D/W,A is Spin(2l)-equivariant
operator and it gives rise to an elliptic operator

D/W,A : Γ
(
X, (S+(P )⊗W )0

) → Γ
(
X, (S−(P )⊗W )0

)

over X. We call this the Dirac operator associated with a bundle gerbe
module W . The next theorem is due to Murray and Singer6:

Theorem 2.1.

Index (D/W,A) =
∫

X

Â(X)chτ (W )
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They proved this theorem by the use of the method of Getzler, Berline and
Vergne2. Here we prove in an alternative way.

Proof. The property of the twisted Chern character implies

ch((S± ⊗W )0) = chτ (S±)chτ (W ). (1)

Atiyah-Singer index theorem1 says:

Index(D/W,A) = (−1)l ch ((S+ ⊗W )0 − (S− ⊗W )0) td(TX ⊗ C)
e(X)

[X]

= (−1)l

(∏l
i=1 exi/2 − e−xi/2

)

x1 · · ·xl

l∏

i=1

xi

1− e−xi

−xi

1− exi
chτ (W )[X]

= Â(X)chτ (W )[X].

The second equality is derived from (1) and the next theorem.

The next theorem is essential.

Theorem 2.2. For every SO(2l)-bundle P → X, we have the spinor bun-
dle gerbe module S±(P ), which is a bundle gerbe module for (X, P,L). Then
we have

chτ (S+(P )− S−(P )) =
l∏

i=1

(
exi/2 − e−xi/2

)
,

where the associated rank m vector bundle E = P×SO(2l)R2l virtually splits
into l complex line bundles L1 ⊕ · · · ⊕ Ll and we put c1(Li) = xi for every
i.

Proof. Consider a vector bundle E = P ×SO(2l) R2l → X. Then we have
E = L1 ⊕ · · ·Ll virtually. Since w2(E ⊕ E) = 0, we have a complex vector
bundle S(E ⊕ E) over X, and

S+(E ⊕ E)− S−(E ⊕ E) =
l⊗

i=1

(
S+(Li ⊕ Li)− S−(Li ⊕ Li)

)

Easy calculation gives us the explicit description of Chern character:

ch
(
S+(Li ⊕ Li)− S−(Li ⊕ Li)

)
= exi + e−xi − 2 for i = 1, . . . , l,
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where xi = c1(Li). So we have

ch
(
S+(E ⊕ E)− S−(E ⊕ E)

)
=

l∏

i=1

(
exi + e−xi − 2

)

=

(
l∏

i=1

(
exi/2 − e−xi/2

))2

.

On the other hand,

chτ (S+(PE)− S−(PE))2 = ch(S+(E ⊕ E)− S−(E ⊕ E)).

By considering the universal bundle ESO(2l) → BSO(2l) and the spin
bundle gerbe (BSO(2l), ESO(2l), L̃) of ESO(2l), we obtain

chτ (S+(ESO(2l))− S−(ESO(2l))) = ±
l∏

i=1

(
exi/2 − e−xi/2

)
(2)

since the ring H∗(BSO(2l);R) has no zero divisor. So far, the equation
holds up to signature. For every SO(2l)-bundle P → X, there exists f :
X → BSO(2l) satisfying f∗ESO(2l) ∼= P , and S±(P ) comes from bundle
gerbe module S±(ESO(2l)) for (BSO(2l), ESO(2l), L̃). Strictly speaking,

S±(P ) ∼= f
∗
(S±(ESO(2l)),

where f : P → ESO(2l) is a bundle map covering f : X → BSO(2l).
Twisted Chern character has the naturality. Hence the equation (2) is
valid for every SO(2l)-bundle P → X.

Since the signature is universally determined, we can see which is correct
by a non-trivial example. For a SO(2l)-bundle which admits spin structure,
the signature is positive. Hence we can determine the signature in (2).

We shall mention spinc structures in the view point of bundle gerbe. A
spinc structure is the unit vector bundle of a bundle gerbe module G with
rank 1. Then chτ (G) = ed/2, where we set d = c1((G⊗2)0). Especially a
spin structure is one associated with a Z2-bundle over P and (G⊗2)0 = C.
Therefore chτ (G) = 1.

Mayer4 defined the Dirac operator associated with some principal bun-
dle. First, we recall the construction. Consider

SO(m)× SO(n)× SO(2) ⊂ SO(m + n + 2)

and λ : Spin(m + n + 2) → SO(m + n + 2). Then we can identify
λ−1(SO(m)×SO(n)×SO(2)) with (Spin(m)×Spin(n)×Spin(2))/Z2⊕Z2,
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where Z2⊕Z2 is generated by {(−1,−1, +1), (+1,−1,−1)}. We denote this
by G(m,n, 2).

Definition 2.2. Let {gαβ} ∈ Č2(X,SO(m)) denote the Cech cocycle defin-
ing the frame bundle P of TX. Then {[ĝαβ , ĥαβ , ẑαβ ]} ∈ Č2(X, G(m,n, 2))
is called a G(m,n, 2)-structure if

λ(ĝαβ) = gαβ and δ{[ĝαβ , ĥαβ , ẑαβ ]} = 1.

We have the complex spinor representation ρc : G(2l, n, 2) → Aut(S2l⊗
Sn). Given a G(2l, n, 2)-structure σ = {[ĝαβ , ĥαβ , ẑαβ ]} over 2l-dimensional
manifold X, we obtain a spinor bundle Sσ associated with it and the Dirac
operator D/σ : Γ(S+

σ ) → Γ(S−σ ). We call this Mayer’s Dirac operator.
If a real vector bundle E → X with rank n satisfies W3(TX ⊕ E) =

0, then we have a G(2l, n, 2)-structure σ = {[ĝαβ , ĥαβ , ẑαβ ]} such that
{λ(ĥαβ)} defines E and {λ(ẑαβ)} defines a complex line bundle F which
satisfies w2(TX) + w2(E) = w2(F ). Mayer proved:

Theorem 2.3. Let X, E, and F be as above. Then we have

IndexD/σ = 2[n/2]

∫

X

ed/2Â(X)
∏

i=1

cosh(xi/2),

where d = c1(F ) and p(E) =
∏

i(1 + x2
i ).

Here we shall introduce twisted unitary structure of X. We define Uτ (n)
as Uτ (n) = Spin(2l)×±1 U(n). Then U(n) ↪→ Uτ (n) is a normal subgroup.
The twisted unitary structures Uτ (n)(X) of X are defined by

Uτ (n)(X) =
{

P̃ → X : Uτ (n)-bundle
∣∣∣ P̃ /U(n) is isomorphic to P

}
.

Theorem 2.4. We obtain the isomorphism

Uτ (n)(X) ∼= Modn(X, P,L) ; P̃ 7→ P̃ ×U(n) Cn = W eP .

Proof. For every W ∈ Modn(X, P, L) a U(n)-bundle P̃W , which consists
of unitary frames of W , defines a twisted unitary structure. This is the
inverse.

The homomorphism Spin(n)×Z2 Spin(2) → U
(
2[n/2]

)
defines a homo-

morphism G(m,n, 2) → Uτ
(
2[n/2]

)
. Then we obtain
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Theorem 2.5. Every G(2l, n, 2)-structure σ gives rise to a bundle gerbe
module Wσ. Moreover Index(D/σ) = Index(D/Wσ

) for Mayer’s Dirac operator
Dσ.

Let σ be a G(2l, n, 2)-structure over X. We denote the associated real
vector bundle by E and the associated complex line bundle by F . Then
we have a spin bundle gerbe (X,PE , LE) of E, and a bundle gerbe module
S(PE) for (X, PE , LE), where PE denotes the SO(n)-frame bundle of E.
Like as the proof of Theorem2.2, we have

chτ (S(PE)) =
[n/2]∏

i=1

(
exi/2 + e−xi/2

)
= 2[n/2]

∏

i

cosh(xi/2),

where p(E) =
∏

i(1+x2
i ). We have to remark that S(PE) is a bundle gerbe

module not for (X,P, L) but for (X,PE , LE).
We shall consider another spin bundle gerbe (X,P ×π PE , L⊗LE). It is

easy to see there is a bundle gerbe module G for this with rank 1 satisfying
(G⊗2)0 = F since W3(TX) + W3(E) = 0. Then G induces an isomorphism
G⊗ : Mod(X,PE , LE) → Mod(X, P,L). We will prove that G⊗ maps
S(PE) to the bundle gerbe module Wσ for (X, P, L) and that

chτ (Wσ) = ed/2chτ (S(E)) = 2[n/2]ed/2
∏

i

cosh(xi/2).

Consider the next diagram:

L

²²

π∗P L⊗ π∗ELE

²²

LE

²²

P [2]

πi

²²

P [2] × πP
[2]
E

πPoo πE //

πi

²²

P
[2]
E

πi

²²
P P ×π PE

πPoo πE // PE .

It is easy to see π∗1G⊗ π∗2G∗ ∼= π∗L⊗ π∗ELE . We define Qy and Qz by

Qy =
{

((y1, y2), (z1, z2)) ∈ P [2] ×π P
[2]
E

∣∣∣ y1 = y2

}
,

Qz =
{

((y1, y2), (z1, z2)) ∈ P [2] ×π P
[2]
E

∣∣∣ z1 = z2

}
.
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Then, π∗1G ⊗ π∗2G∗ is isomorphic to π∗ELE over Qy, and to π∗L over Qz.
We obtain the isomorphisms:

π∗2(G⊗ π∗ES(PE)) = π∗2(G)⊗ π∗P π∗ES(PE) = π∗2G⊗ π∗Eπ∗2S(PE)

= π∗2G⊗ π∗E(LE × π∗1S(PE))

= π∗2G⊗ π∗ELE ⊗ π∗1π∗ES(PE)

= π∗1G⊗ π∗1π∗ES(PE) = π∗1(G⊗ π∗ES(PE)) over Qy

(3)

and

π∗L⊗ π∗1(G⊗ π∗ES(PE)) = π∗L⊗ π∗1G⊗ π∗1π∗ES(PE)

= (π∗L⊗ π∗ELE)⊗ π∗1G⊗ π∗1π∗ES(PE)

= π∗2G⊗ π∗2π∗ES(PE)

= π∗2(E ⊗ π∗ES(PE)) over Qz.

(4)

The isomorphism (3) implies that there is a hermitian vector bundle
W ′ over P such that π∗P W ′ is isomorphic to G ⊗ π∗ES(PE), and (4) says
that W ′ is a bundle gerbe module for (X, P,L). It is easy to see that W ′

is isomorphic to Wσ by the construction.
Moreover, these are isomorphisms with connections. Therefore, ∇G ⊗

π∗E∇S(PE) induces a bundle gerbe module connection ∇Wσ on Wσ such that
π∗P∇Wσ = ∇G ⊗ π∗E∇S(PE), and

chτ (Wσ) = chτ (G)chτ (S(PE)) = ed/2chτ (S(PE)).

So we have proved Theorem.0.1.
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